
Best
Available

Copy

AD-778 426

GRAPHIC DISPLAY PROCESSOR PROGR A iVi ME RS
GUIDE

Brian Rosen

Carnegie-Mellon University

Prepared for:

Advanced Research Projects Agency
Air Force Office of Scientific Research

20 January 1974

DISTRIBU1ED BY:

^JUI
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

 MM ■■IMHHHMM

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

I«. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

14. MONITORING AGENCv NAME A ADDRESS^' dllltrttl from Coulrolllnt Olllca)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 22209

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

6ii0iD
A02466

12. REPORT DATE

20 January 1974
U NUMBER OF PACT

35
IS. SECURITV CLASS, fof (Mt report;

UNCLASSIFIED

IS«. OECLA^SIFICATICN/ DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (ol ihl, Report;

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol (ho mbittmct i-fllmd In Block 30, II ddUrtni Itom Rtport)

IS. SUPPLEMENTARY NOTft

19. KEY WORDS fConlmu* on rovor«. ml*» II nmefmry and Idmnllly by block numbor)

'NAIIONAI TECHNICAL
INFORMATION SERVKT

20. ABSTRACT 'ConMnu* on rmvmnm aidm II n*c*«««ry mnd idvnlify by block number)
GDP2 is a Graphic Display Processor which interprets a Display List stored in
Memory. It works in conjunction with a PDF 11 computer to produce pictures,
characters etc. tilt system also includes:

1. A Keyboard to communicate with the system
2. An asycronous line interface (ASLI) which is connected to •mother

computer (our PDPiO>.

■ n «ir~

D^ I JAN .^ 1473 EDITION OF I NOV 65 IS OBSOLETE
I

UNCLASSIFIED

«rr-'iaiTV CLASSIFICATION OF THIS PAGE (Wh-n D'lm Emrrt

^MMSM mm iam^mM MM -

UMCLASSTPIED

ttcuwiTY cuMnrionow or ih.i i>*ae «»»eW />•»• c.-it^r^-

20. Attract (Continued)

3. A Clock which interrupts ehe PDP11 60 times per second

4. A Read Only Memory (ROM) which contains a program to restart the Graphics
System.

5. (optionally) A Spark Pen, which can be used for graphic input and the
pointing function (cursor positioning)

6. (coming) A Remote Restart System which allows restarting the ROM
program from the terminal.

7. (coming) A Matrix Multiplier and Clipping Divider fov rotation, trans-
lation and windowing features for more complex graphics.

Most of the Hardware is physically separated from theDisplay Tube, Keyboard and
Spark Pen. The parts of the system the user has to manipulate or see is in
the Terminal Room. The ncisy stuff is in the Computer Room. This documentatiot
purports to describe the hardware of the GDP itself.

1^-
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfHTi.n Oat« Enltr.d)

■ -■-

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION

l K;^2 ? a ^APH,C DISPLAY PROCESSOR which interpret a DISPLAY

o odutn t1" MEM.0RY- " WOrkS " '-0njUnC,i0n w'th a PDP" compue to produce pictures, characters etc. The system also includes:
1) A KP BOARD to conmunicate with the system
2) An ASYCRONOUS UHE INTERFACE (ASLI) which

is connected to ano»h,3r computer (our PDP10)
3) A CLOCK which mte-rupts the PDP11 60 times per second
4) A READ ONLY MEMORY (ROM) which contains a program

to restart the Graphits System.
5) (op'ionally) A SPARK PEN, which can be used for

graphic input anj the pointing function (cursor positioning)
6 (coming) A REMOTE RESTART SYSTEM which aüows restarting

the POM program from the termina,

7) (coming) A MATRIX MULTIPLIER and CLIPPING DIVIDER
for rotation, translation and windowing features
for more complex r,. aphics.

^ost of the Hardware is physically separated from the Display Tube
Keyboard and SparK Pen. T. e parts of the system the user has to mandate
or see is m the Terminal Room. Tne noisy stuff is in the Computer Room

owJpnPn^^l ^^T IS ^ INTELUGENT TE™INAL. Each system has its

the GDP Vo Tit : h r^' ,0 ,,• The PDP11 ^ be pr0ß—d f0 -w the GDP to create whatever picture the ur.er wishes. For instance in the

:ump;%:Mh;ddw:;ayMatr,y Mul,,p,,er'software on ,he ii ^do ^—

This documentation purports to describe the hardware of the GDP itself Doc^enta l0n on the PDpili Keyboardi c|ock) ROM(^ p^ se,,.

are elsewhere, as i. the documentation on the standard PDP11 software
system implemented for the ,Schics Project. software

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
l Major Subsystems

GD92 has the following major subsyfems:
1) Instruction Processing

Fetchmg and executmg of d.splay list mstructions
t) Character Processing

Translation of character str.ngs to vector lists
suitahle for drawing

3) Line Drawing

Draws vectors on the screen
4) Control Word Processing

Mode and state alteration commands
5) UNIBUS/Memory interfacing

iJtVLm::. subsy'c"s ,5 de5cr,bed ■"deuii ,a,e'' M »• •»•'« «a"

cöT
u
hnt.r^,£'J,,S ,he "^^ ^ 'he ^^ * '^ »» M« P".-

2m, GDP fetches en INSTRUCTION (r«, Ih. memory locaf.on pcnted to by

-nd/or vectors to be drawn. An INTERRUPT instruction causes the PDPl o
be interrupted. JUMP and JUMP TO SUBROUTINE instructions alte the odr
of mst uction execut.on (which is normally sequential) After execution of an
mstruct,0n. a new one is fetched, ano tne process is repealed

4)If Character Mode is enabled, an Execute instruction causes the Character

EP eS,l trüdion'^^^H3 Charader S,rmg- The ^ opetand^th execute instruction is used as a pointer to a IM of characfp-s Two
rharacters pointed to by the CHARACTER POINTER (CPIRWoT»
fetched into the CHARACTER BUFFER REGISTER (CB^ ' ^ "*

fable'cf^HH11' ,he ,0" by,e 0f CBUF' ,he Charaders ^e indexed into a

~^^^JZ^TABLE B-E —
vectors to'b'rH3","^ T the ,able i6 in,erprefed as e^er a list of vectors to be displayed (thr representation of the character) or as an
nterruptserv.ce Routine address for the PDPU. In the case ve tor list

the Line Drawer I. activated to d.splay the character '

 «^i _

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTA!
1 Major SuDsystemc

7) When the Line Orawer finishes the character description list, or the PDP11
restarts the GDP from the service "Outii.e, a-.cther character is displayed. If
necessary, a new fetch is made before looking up the byte in the Character
Dispatch fdble.

8) Vector lists from character process.ng or display files causes the Line
Drawing operation to occur. Vectors are fetched from memory pointed to by
the VECTOR POINTER REGISTER (VPTR) into the VECTOR BUFFER REGISTER
(VBUF), and drawn on the screen. The drawing operation affects the X and Y
position "?gisters XR and YR.

9) Completion of a vector list causes ether a new character operation or a
new instruction operation, depending on which process (character or
instruction) initiated the line drawer process.

10) Intermixed in Instruction, Character, and Vector lists are CONTROL
WORDS which cause Mode and State changes. Among other things, there are
Control Words which affect the Intensity, Scale, and Format of vectors, turn
on and off Character Mode, cause interrupts to the PDP11, effect SETPOINTS
(lOiiding of X and/or Y registers), and terminate lists.

MMH

• }
**- '•.■-.■

G0P2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
2 Registers

Most of the registers in GWII have already been mentioned, but here
they are all together:

^GPC Graphics Program Counter 16 BIT
Points to ne,<t Instruction to be executed.
Incremented oy 2 after each fetch

CPTR Character Pointer
Points to next character to be displayed.
Incremented by 2 on each character fetch
(two characters per fetch).

16 BIT

CBUF Character Buffer
Holds two characters to be "Displayed".

16 BIT

DTBAR Dispatch Table Base Address Register 16 BIT
Pointer to an in-core table of addresses, one address
for every possible character code.

VPTR Vector Pointer
Pointer to a list of vectors to be drawn

16 BIT

VBUF Vector Buffer
Holds a vector to be drawn on the screen

16 BIT

XR X Register 12 BIT
Holds current X position of the bean. The register is
sign extended to 16 bits so that negative
numbers look like regular two's complement integers
to the PDP-11.

YR Y Register 12 P'T
Holds currRnt Y position of the beam. Sign extended like
XR.

STATE State Register 16 BIT
Contains the SCALE.INTENSITY LEVEL, CMODE, UNBLANK
and FORMAT sub-registers.

GIS

GCSR

Graphics Interrupt Status 16 BIT
Used as the second word of an interrupt "Vecto." for the
PDP-11 during an interrupt. GIS holds the Program
Status for the interrupt service routine.

Graphics Control and Status Register
Holds the GO, CLEAR, CLOCK DIVIDE, WRAP
and INTERRUPT ENABLE bits.
These will be explained later.

16 BIT

■M^nMM mm

.- >•

GDP2 GRAPHIC DISPLAY VERSION 2 PXIMENTATION
3 All You Need To Know About instruction Processing

• < . ■ »•. '.■.

it blanket out the opcode bits (15 and 0) of the return address word. This is
because the opcode cf the JMP instruction is 00. The "instruction" deposited
in the first location of the subroutine is actually o JMP instruction bacK to
the ca'ler cf the subroutine. This avoids the necessity of an indirect
addressing bit. Note that subroutines can be neotable, but cannot be
recursive or reentrant w.t'nout some help from the PDP-11.

The third instruction is INTR, which causes an interrupt to the PDP11. An
interrupt is gene, ated at Bus Request Level 4. The conti its of VPTP (which
is the operand of the INTR instruction) is a pointer to a routine, not an
interrupt vector. Tt is is contrary to most PDP11 p3ripheral device interfaces.
If you want to know how this is done, read on. If you don't care, skip the
next paragraph.

When the PDPU honors the bus request, it needs an interrupt vector.
This vector is passed to the PDPU by t'.ie device requesting an interrupt.
Usually, the address is below location 400. Ther the computer uses the
interrupt vector it obtained to get a new Program Counter and Program
Status word.

PC«-M(VECTOR)
PS*-M(VECT0R+2)

In this case hwever, we already know the desired new PC. Therefore, we
pa<>s the address of VPTR to the PDPU, not its contents. This address is in
the peripheral bank, normally 165104. When the PDPU does the access on
the UNIBUS to get a new PC, it goes to address 165104 (VPTR) and puts the
contents of VPTR into the PDPU PC. Now, we need a PS. The PDPU will
access address 165106, (address of VPTR+2). It just so happen; that address
165106 is an unused register (called GIS for Graphics iriierrupt Status).
Before starting up the GDP, the programmer should load GIS with a suitable
interrupt status word, similar to one used in a normal interrupt vector. This
procedure is known as an INTERRUPT ©VPTR.

When the PDPU completes the interrupt service routine, before it
executes an RTI instruction, it must continue the GDP. This is done by writing
a one into the GO bit of the GCSR. Graphics then continues on, processing
the next instruction. It should be noted that the INTERRUPT ENABLE bit of
the GCSR must be set before any interrupts can be generated.

The final instruction is XQT, the execute command. It causes the GDP to
draw something on the screen. The operand of the XQT instruction is
assumed to be a pointer to a list of vectors to be drawn, or a list of
characters to be interpretted. The CMODE bit of the STATE register
determines whether the character processing logic or the vector process will
be activated. If CMODE is a one, character processing is enabled, if CMODE is
zero, then vectors are assumed.

'

 m -

y ■
GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTAT'ON

^-

acter process rmishes, ine üu^ is trto ID incr
process the next instruction. As we will see latsr, it ir. possible to dedc'ivate
the character process and artivate the vect-jr process while proces^i'g an
XQT instruction, (and vice versa) by manipulating the CMODE bit with Control
Words. Thus the state of the CMODE bit before an XQT instruction determines
initial assumptions about the vector/character determination, but the decision
can be overiden from within the data.

An example of intruction processing will now be given. Thr notation used
is that of a PDP-11 Assembler format, ie:
LABEL: INSTRUCTION OPERAND iCOMMENT

MLOOP: XQT BOX
JMP TG

;DRAW A BOX
;G0 TO TAG ROUTINE

TG: JMS REPOS
JMS LABEL
1NTR CLKT1C
JMP MLOOP

POSITION BEAM FOR TAG
DRAW THE LABEL
HAVE POP 11 WAIT FOR REFRESH
THEN REFRESH THE PICTURE AGAIN

REPOS: 0 ;SPACE FOR RETURN ADDRESS
XQT 3XY iPOGITION BEAM UNDER THE B
JMP REPOS •.SUBROUTINE ROUTINE

LABEL: 0 ;RETURN ADRDRESS SLOT
XQT FRSTWD ;DRAW FIRST HALF OF LABEL
XQT RESTLN ;DRAW THE REST OF THE LINE
JMP LABEL ;RETURN TO CALLER

BOX: <vector sequence to draw a box on the screen>
SXY: <vector sequence to reposil ion beam for tag line,

and change to CHARACTER M0DE>
FRSTWD: <Character list to draw part of the tag line>
RESTLN: <Character list to draw the rest of the line>

I I

J

rW,wi*«RT*'

GRAPHIC DISPLAY VERSiON
To Usi' Chdr^rtet Procesomt

Character proce-^iny logic In the GDP trans'aies eight bit character
codes into vector lis.s or PDIMl service routine caiis. Character lists
themselves are stü'-ed in memory in contiguous bytec, just as the PDP-il
instructions use them. The sequence of displaying a Character list is as
follows:

The GDP places the operand of a XQT instruction in the CPTR register.
Then a full word fetch is made into the CBUF register .

CBUF*-M(CPTR)
CPTR-CPTR*2

Starting with the low byte in CBUF, the GOP constructs an address by
taking the high 7 bits of the Dispatch Table Base Address Register, DTBAR as
bits 15-9 and the character code as bits 8-1, always forcing bit 0 to be a
zero. Then a fetch is made into the VPTR register.

VPTR«-M(DTbAR<15:9>+CBUF<7:0>»2)
This ha; the result of looking up the character code in a memory table.

The contents of the word accesed by the table is interpretted as an
address. The lowest bit in the address is used as a flag. If the flag was a
zero, the address is used as a pointer to a list of vectors to be drawn. The
vector processing logic is called upon to draw the list of vectors. When it
finishes the list of vectors, the vector processing logic returns control to
character processing logic.

If the flag was a one, the address is used as a pointer to a PDP11
service routine. This is another case of INTERRUPT «aVPTR. The contents of
the table value is used as direct pointer to the service routine. Here again,
the flag bit (bit 0) is blanked when sending out the contents of VPTR, so that
we oo not get an illegal (odd) address on the interrupt procedure.

When the vector process completes the first character (or the GO bit is
set by the PDPU), a new character is processed. This time the high byte of
CBUF is used to obtain a table entry.

VPTR«-M(DTBAR<15:9>+CBUF<15:8>*2)
The same procedure is used on suceedmg characters. Since full word fetches
are done into CBUF, a character string may not start on an odd byte
boundary.

Characters are not restricted in size, length, drawing time etc. Characters
are defined to be vector lists or PDP11 service routines, pointed to by eight
bit codes. That is all the restriction the hardware enforces. In particular, no
assumptions are made about vector format, intensity or scale initial
conditions. Furthermore, a vector list that comprises a character must include
any beam repositioning required. Generally, assumptions are made about any
one character set (by the SOFTWARE, not the hardware) as to whether the

MMMMDM
, _ . __^

rm wmwm

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
4 How To Use Character Processing

10

beam is on or off initially, which vector format is set up, whether
repositioning is done after or before arawmg a character etc.

Providing you have room, two or more complete character sets can be
loaded ir o memory, and switching can be done between character sets by
changing the contents of DTBAR (to point to the alternate character set's
dispatch table). This switching of DTBAR must be done by the PDP11
(perhaps by a routine called as a result of an interrupt character, or an INFR
instruction). With 256 possible character codes, sometimes two 128 character
sets can be accomodated in one dispatch table.

-—

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
5 Care and Feeding of Vectors

12

of the GDP, so that the only care needed is to assure that the maximum
length of either component does not exceed that permitted by the desired
format (4 bits on Short vectors, 8 bits on Medium, and 13 on Long, all

inc'uding sign).

The vector processing logic has two stages. Vectors are obtained from
memory by fetching on the VPTR register, into the Vector Buffer, VBUF.

VBUF«-M(VPTR)
VPTR«-VPTR+2

In the case of Long vectors, anotner fetch mus\ be made to get the other

component.
VBUF^M(VPTR)
VPTR«-VPTR+2

For your information, there is another register, which you can't get at, which
receives the contents of VBUF before the second fetch is made. When both
vector components are available, the line drawer extracts the DX and DY
from the VBUF according to the current format, and draws the vector. Delta Y
always has a lower UNIBUS address than Delta X. This occurs because DX in
medium and short vectors is in the rightmost byte, which has a higher

UNIBUS address.

We now turn our attention to the Intensity of the vectors. The brightness
of the vectors is controlled by two registers, INTENSITY LEVEL, and
UNBLANK. UNBLANK provides gross control of visible vs mvisble lines. It is a
single bit. If UNBLANK is on (a 1) vectors are drawn visibly, if it is off
vectors are invisible. The UNBLANK bit is modified by Control Words, which
we will examine In the next section. When vectors are visible, the brightness
is further controlled by the current INTENSITY LEVEL This is a 4 bit (16
value/ register. All sixteen grey levels should oe distinguishable from each
other. Like UNBLANK, INTENSITY LEVEL can be changed via Control Words.

In addition, there is a bit in the GCSR called WRAP. This is used to
control wrap-around. If the WRAP bit is set, vectors which are drawn off one
edge of the 10 bit physical area will apoear on the opposite edge
(wrapped-around), and continue drawing, visibly. If WRAP is off, (the default
case on existing software) vectors drawn off the edge will disappear. So long
as the virtual position does not exceed the 12 bit boundary, vectors drawn
off screen will be calculated correctly, and accurate positioning maintained.
Note that drawing offscreen does not abort drawing, it merely turns off the
intensity. This feature can be used in a clever way. If your entire picture is
made up of only relative components (see SETPOINTS, they aren't relative),
you can cause Graphics to display any arbitrary 10 bit window of the virtual
12 bit picture. The window need not be the center section, to do this, you
initialize the beam position before drawing such that the relative movements
put the desired window is the visible section of the screen. Please do not
confuse this scissoring of the vectors with true windowing and remember

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
5 Care and Feeding of Vectors

13

that it takes just as much time to draw an offscreen vector as one which is
entirely on screen.

The current position of the beam is always kept in the XR and YR
registers. These registers are accessable by the UNIBUS, and can also be
changed via Control Words. The registers have only 12 bits of significance,
but are sign extended to appear like 16 bit registers.

The lengths of vectors can be modified by the current SCALE value. This
register, 4 bits long, is encoded according to the table in the Appendix.
Lengths of vector components are multiplied times the scale factor.
Quasi-logarithmic scaling is provided to increase or decrease piciure
segments in approximetly 20/" increments. Scaling can magni'y a picture up
to 3 3/4 times normal size, and as small as 1/4 of normal size. In case you
were wondering, SCALE can be changed by Control Words. A scale value of
1C (octal) gives you a normal size picture. Scaling actually modifies the DX
and DV of vectors (it does not alter memory however), thus a two times
normal size scaling factor applied to a 2,2 vector will result in a 4,4 vector
from the current X and Y ^am positions. If, for example, the beam was at
3,1 before drawing the vector, the next vector will start at 7,5.

There is one more bit which affects vectors, the CLKDIV bit. This is part
of GCSR. The basic clock frequency of the line drawer can be divided by two
with the CLKDIV bit. Slower clock speed (CLKDIV=1) gets you brighter,
cleaner lines. Fast clock gives you dimmer, grainer lines, but gives you twice
as many flicker free inches of vectors. Use slow mode if you can get away
with it, high speed if your picture begins to flicker.

When processing vectors, the GDP will do a full vecto, look-ahead if
possible. This means that a new vector can be fetched into VEIUF as soon as
the line drawer begins to draw the previou' one. In fact, it is possible to
start drawing a very long vector from vector processing in character mode,
discover that the vector list is fmshed, get back to character processing, find
out that you have finished the character list, go back to instruction
processing, fetch an new instruction, get back into character processing, pick
up a character, look it up in the table, reactivate vector processing and fetch
the first vector of the first character all before the previous vector is
finished drawing. Two things are noteworthy. Firstly, the line drawer will not
stop drawing when it finishes a vector if another one is waiting in VBUF.
Secondly, if you get an interrupt from the GDP, you cannot assume that the
vector drawer is finished. The DONE bit of the GCSR will not come up until
the vector is finished, so that you must examine it if you need to load or
read XR or YR. The intensity modification registers can be changed however,
because their old values are saved by the line drawer when it starts drawing
a vector. SETPOINTS (see Control Words) will not be processed until the line
is finshed drawing. This is another method of assuring that the XR and YR
registers are valid from within an interrupt service routine.

■-- - --- _ U

GDP2 GRAPHIC DISPLAY VERSION 2 DOCI^rNTATION
6 Mökmg CONTROL WORDS Work for You

15

the state of the CMODE bit. The low bit of the operand is loaded into CMODE.
The remaining three bits are ignored. There are two special cases of LOAD
CMODE. If CMODE was a 1, and if is loaded with a 0 while character
processing is activated, the following addit.onal register transfer is done:

VPTR'-CPTF
Then, Character processing is disabled and vector processing is activated.
Similarly, if CMODE is off, and Vector processing is activated, if H LOAD
CMODE Control Word is processed with an operand of i, the transfer:

CPTR-VPTR
is made, and Character processing is initiated. This is used to switch from
Character processing to Vector processing and vice versa. A LOAD CMODE
Control Word, when encountered in an Instruction fetch, just changes the
state of the CMODF bit. Thus it changes the assumptions made about the
object of the next XQT instruction. LOAD CMODL" with an operand of 0 when
CMODE is already a zero is a No-op, as is LOAD CMODE 1 with CMOLF
already set.

The fourth opcode is the LOAD FORMAT class. The lower two operand
bits arr placed in the FORMAT register. The upper two operand bits are
ipnored. A change in FORMAT only affects vectors fetched after the LOAD
FORMAT Control Word, if can never affect vectors already fetched.

The next four classes of opcodes affect the INTENSITY LEVEL and SC.^LE
registers. For each register there are two types of Control Words, ABSOLUTE
and RELATIVE. The absolute types load the operand of the opcode into the
desired register. The relative varieties add the operand to the current value
of the register. This add is a two's complement addition, with a four bit
(including sign) number. Thus, you can alter the contents of SCALE or
IMENSITY LEVEL + and - 7. Overflow from the addition is ignored, the value
"wraps around". Thus LOAD INTENSITY RELATIVE 4, when the INTENSITY
LEVEL is at 5 will result in a final value of 9, but if the initial value was 14,
the result will be 0. We have LOAD INTENSITY ABSOLUTE, where the operand
is moved into INTENSITY LEVEL, and LOAD INTENSITY RELATIVE, where we
add the operand to the current INTENSITY LEVEL. Similarly, LOAD SCALE
ABSOLUTE is used to force the SCALE to a particular value, and LOAD SCALE
RELATIVE is used to make pictures bigger or smaller, without having to know
what the previous SCALE value was. The relative forms of these Control
Words are espec ally useful in subroutines, where the initial conditions are
not known, and r is desired to not alter the state permenantly. By including
LOAD SCALE RELATIVE 1 before the first vector, and LOAD SCALE RELATIVE
-1 after the last vector, a "pure" suDroutine tan be created which makes
part of the picture 207 higger.

The next two classes of opcodes are similar in that the operands are
encoded to provide up to lt> different Control Word functions in one class.
They are the SPECIAL CLASS 1, and SPECIAL CLASS 2 groups. We will

■

r.mmm

CDP2 GRAPHIC DISPLAY VERSION 2 -DOCUMENTATION
6 Making CONTROL WORDS Work for You 16

l.nes ION and OFF H J . reel5,er, and ,hUS a,fec, v,sib,e ** invisible
Control W/nH , C,ly turn ,he UrgBLAr;'< b'1 0n and off. The 1C0M

^e^3" r--'—------
cthl, e b

mne l::^
5 so0::; 'he !?FF-'«,"-ION »■»"-•"on *>. «„«

iOFF3 or IA T rn ^ . encountered. In fact, any of the I0FF1, I0FF2

carry over between characters or XQT llts ' ' ' ,ALT """^

The SPCL2 Control Words are thp <;FT r\^. TU

Xr?, YR or STATE registers The data to |oaH i !' CaUSe l0admg 0f ,he

the Control Word In «1 J,w i ' reeiSterS immediately ,'ollows
Control Wo ds SET xTd ^ . ^ f0Ur CUrren,,y '-P'^ented Set
sim.lar e^ept fhaMhe YRrl? ^ ^ ^ XR re8is,er- SET Y '•
r- »u R reeis,e' •« atfected. SET XY lr -Js both XR anH VD
Ir^ this case the X value Is first, followed by the Y (.o y about thl^
SEiXY is sometimes referred to as a SETPOINT Tho crxDniMT
placement of the bea- The current c^lF „ . J ^ ,S an abSOlu,e

values between ♦2047 and Pf^T ^CALE value does not affect the data.

is the SET STATF rnnf !^uL ^ TIf''
legaL The last flavor of SET commands

word SmL Ici E NTENSTT; .'FW^ l0^Snhe STATE reg,S,er ^ ,he ^
Part of STATE a comnlnfl ^ ^^ UNBLArjK and F0RMAT ^ *
worJs with tL qPT CTAT! oy "^ env,r0nme'1' "n be established in two

^"a^arr os4 ss ip^^uf0;^:6 ope;ands be, veen *and 7 o° H^. me upper bit of the operand is currently igncred.

.ho^d not t'rk^t^,00^'words are cu"e"," '*»-•»• «e

__

mm

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 17
6 Mokmg CONTROL WORDS WorK for You

poor efficiency. For this reason, HALF WORD Control Words have been
implemented. These Control Words are only available in Short vector lists.
They are recognized by a 1 0 0 0 1 in bits 7:3 of any byte in a Short
vector file. The remaining three bits are used as an operand. The operand
bits are mterpretted exactly as the operand of SPCL1 Control Words. Thus
we can alter the UNBLANK bit, and TERMINATE a short vector list, at the cost
of rnly 8 bi'.s.

Before we leave Control Words, we might explain how the choice of bit
patterns was made and how it affects the data. In instructions, the operand
of XQT or JMS instructions is defined to be restricted to the range
400-37776 octal. This eliminates confusion between an instruction with the
high opcode bit-1 and an operand below 400, and a Control Word. In
character processing, the character code 200 (octal) may not appear in the
high byte of a word. This also eliminates confusion between Control Words
and character data. In vector lists, we note that Long vectors may not have
values lower than -10000 (octal). Thus the Control Word pattern (which is a
very large negative number) can not occur. The lengths of the components of
medium vectors are defined to be in range +■177 to -177, so that having a DX
of 400 (which is -200 octal) is illegal. Note that there is no positive
complement for this number in an 8 bit space. In short vectors, the
restriction is that DX and DY must ue between -7 and +7. The octal 200 in
the upper byte which signifies a Full Word Control Word is a vector -10,0,
wnich is illegal. Likewise, the Half Word Control Words appear as vectors
with DX's of -10, and negative DY's, and therefore illegal. In all cases of
possible confusion of a Control Word with another data item, the exsistance
of the Control Word is assumed.

ZM

GDP2 GRAPHIC DiSPLAY VERSION 2 DOCUMENTATION
7 Miscellaneous Things To Know

18

The Double Port Memory is a great boon to Graphics because it allows
the GDP to get almost fie minimum 650 ns. cycle tim^ of the memory. The
only problem is that if the PDP11 requests a word in the Double Port
Memory, the GDP must wait until the processor is finished before it can get
its cycle. To avoid this problem, the programmer must attempt to minimize
the number of cycles the PDP11 requests on the memory. Some of the
Graphics Terminals will have more than 8K of memory. If this is available, the
more stuff that is Kept in the PDP11 stand alone memory, the less accesses it
will make on the Double Port. In any case, attempt to minimize the number of
cycles the PDP11 does in the Two Port Memory.

There are a large number of No-ops in the Control Word system. These
are mainly reserved for future expansion. Opcode 17 will always be kept as
a No-op however, so that programs can use them as desired. Similarly, the
"ignored" bits in the LOAD FORMAT, LOAD CMODE, SPCL1, and SPCL2 may be
used some day, so don't use them for anything else.

We have so far ignored the very basic instructions to programmers of
how to initialize and start up the GDP. There really are very few things to
do. First of all, a - jitible Dispatch Table should be set up, and the Base
Address stored in the DTBAR. The initial STATE should be established, unless
one of the first "instructions" includes a SET STATE Control Word. The
INTERRUPT ENABLE bit in the CSR should be set, and a suitable status loaded
into the GIS register. Then, move the address of the first instruction into the
GPC, and GDP will take over from there. Don't forget to set up the PDPll's
stack register if you expect interrupts. The usual method for enmng a list is
an INTR to a service routine which causes a wait for a refresh clock tick. It is
preferable to run the GDP at a 60 Hz refresh rate. Slower refresh cycles will
begin to how flicker eventually. If the refresh rate is not a integral multiple
of the power line frequency, hum can sometimes be noticed. When your
display list is »oo big, switch to high clock speed (CLK^IV=0), and run as fast
as you can.

Although it was designed mainly for mamtainance reasons, there are two
additional features of the GDP. If the CPTR register is loaded from the
UNIBUS, the GDP will begin character processing (CMODE is forced to be a 1).
This can be used to draw a single character string. Similarly, the VPTR
■egister can be loaded via the UNIBUS, and a vector list will be displayed.
rERMINATE Control Words in the character string or vector list in these
cases will cause GDP to halt musch like the effect of an Instruction list
TERMINATE. This does not imply that the end of character description lists
should not be TERMINATES when starting via a UNIBUS load of CPTR. The
TERMINATE here still causes a new character fetch.

The CLEAR bit of the GCSR is used to "Crash" the GDP. It is similar to a
RESET instruction, but only affects the GDP. Extensive use of this to stop thf.

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

20

APPENDIX A
A Ii3t of Registers and their UNIBUS address assignments.

ADDRESS REGISTER USE
1B5188 CSR Control and Status
1B5102 GPC Graphics Program Counter.

Points to next instruction
165184 VPTR Vector Pointer. Points to next vector,

also holds interr-utit PC
165188 CIS Graphics Interrupt Status. Holds PS for

INTR VPTR interrupts
165118 STATE Holds SCALE, INTENSITY LEVEL,CnODE,UNBLANK,

and FORHAT
165112 DTBAR Cispatch Table Base Address Register

for character description lists
165114 CBUF Character Buffer.

Holds two 8 bit characters to be drawn
165116 CPTR Character Pointer.

Points to next character to be interpretted.
165128 VBUF Vector Buffer. Holds vector to be drawn
165122 XR X Register. Holds present X coordinate of beam
165124 YR Y Register. Holds present Y coordinate of beam

-

1
GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION

APPENDIX

21

Bits in JSR are:

IDONEI IE I

8 7 6

IURAPICLKDVI GO I CLEAR!

3 2 18 15

BIT NAME USE
0 CLF.AR Reset graphics to turn on conditions
1 GO Continue from interrupts
2 CLKDV If a 1, run line Iraner at full speed,

if a 0, run at half speed. Half speed is brighter.
3 URAP If a 1, don't wrap around af 10 bit boundary
B IE Interrupt Enable for all interrupts
7 DONE Graphics is not doing anything useful

Bi ts in STATE are:

I SCALE I INT LVL ICnODEI

15 12 11 8 7

IUNBNKI

4

I FflT i

1 0

BIT
0-1

11-8
15-12

NAME
PUT

USE
Pormat of vectors 0»short, l=medium,
2= long, 3=unimpleniented

UNBLANK If a 1, vectors drawn are visible,
if 0, invisible

CMODE If a 1, Characters are/will be drawn.
If a 0, Vectors are/will be drawn.

INT LVL Intensity Level, 15 io maximum, 0 is minimu
SCALE Scale for vectors

__ -

1

CVP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION

APPENDIX

22

SCALE bits are encoded as follows:

OCT DEC

17 15 = 3 1/2 Times Normal size

IG 14 = 3 M

15 13 = 2 1/2 II

14 12 = 2 II

13 11 - 1 3/4 M

12 U) - 1 1/2 11

11 3 - 1 1/4 II

ie S - NORflAL SIZE (1 X)

7 7 - 7/8 T imes Normal Size

b 6 = 3/4 N

5 E = 5/8 ii

4 4 = 1/2 il

3 3 = 7/1G ii

2 2 - 3/8 n

1 1 - 5/1B M

3 0 - 1/4 it

MMMMIIHBMUMMMaam -- I

GDP2 GRAPHIC DISPLAY VERSION 2 OOCUHENTATION 23
APPENDIX "

APPENDIX B
VECTDR, CHARACTER and INSTRUCTION FORMATS

VECTORS

SHORT

I DELTA X I DELTA V I DELTA X I 'DELTA'Y" "l

15 12 11 g "T" l"'l ä"

MEDIUM

[__ DELTA X 1 DELTA'Y i
^ „._ _

LONG

1 DELTA Y 1

1 DELTA X ~~\

15 """ 3"
Delta X and Delta Y are in twos complement format.
Long Vectors are limited to 14 bits (13 bits of magrn lüde plus sign).
but should be sign extended to 16 bits.

CHARACTER FORMAT IS:

[_ 2^ CHARACTER I Ist'cHARAcTER" |

DISPATCH TABLE BASE ADDRESS REGISTER FORMAT:

I BASE ADDRESS I "„used "'"

15 9 8 g"

 -

GDP2 JRAPHIC DISPLAY VERSION 2 DOCUflENTATION
APPCNDIX

24

INSTRUCTION FORflAl IS:

IOPC1I OPERAND ADDRESS IOPC2I

15 14

FETCH: VPTP * nf.lPC)
GPC - GPC + 2

1 8

INSTRUCTION ARE:
OPC OPC

8 1

8 0 GJMP PC *■ VPTR
8 1 cjns fKVPTR) *- PC

PC - VPTR + 2
1 8 GINTR INTERRUPT ©VPTR
' 1 GXQT EXECUTE

Execute a data file at VPTR.
Execution is contrulled by the CnODE bit.
when CMODE is a J, the data file
is assumed to be a list of characters
otheruise, it is a list of vectors.
if CMODE - 1, than an additional CPTR«-VPTR
transfer is done before execution.

,,.

■'

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 25
APPENDIX

APPENDIX C
CONTROL WORD FORHATS AND ACTIONS

Full Word Control Words are of the following form:

II 0 0 0 0 0 0 0 I <4 bit opcode> I <4 bit operand> I

15 8 7 4 3 8

Where the opcodes cause the following actions

OPCODE NAME ACTION
8 TERM Terminate, go up 1 level. If processing vectors,

then end vector list and fetch next character
(If CnODE-l) or next instruction (if CnODE - 0).
If Processing Characters, TERN causes new
instruction fetch. TERM while processing
instructions sets done and stops all action.

1 INTR Interrupt PDP11 at vector 184, BR4.
Ignores operand field.

2 LCMD Load CMODE CnODE«-OPERAND<0>
3 LFMT Load FORMAT FORhAT^OPERAND<l:0>
4 LILA Load Intensity Level Absolute

INT LVL«-DPERAND<3:0>
5 LILR Load Intensity Level Relative

INT LVL4-INT LVL+0PERAN0<3:B>
(operand is taken to be in twos complement
representat ion)

B LSCA Load Scale Absolute SCALE^0PERAND<3:B>
7 LSCR Load Scale Relative SCALE*-SCALE+OPERAND<3:0>

(Twos complement representation)
10 SPL1 Special Codes 1. Operand is interpret ted as:

0 TERM1 Terminate same as TERM
1 ION Intensity On UNBLANK^-l
2 I OFF Intensity Off UNBLANK^-B
3 ICOM Intensity Complement

UNBLANK-NOT UNBLANK
4 I0F1 Intensity of for next vector only
5 I0F2 Intensity off for next 2 vectors
B I0F3 Intensity off for next 3 vectors
7 I ALT Intensity alternate on and off

Continues until next control word.
Starts as off.

 i ■ ■ J

"^^^^^K-^am

G0P2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION
APPENDIX

26

OPCODE NAME
11 SPL2

12-1G
17 NOP

ACTION

Special Codes 2. Operand is interpretted as:
B SETX

1

2

Set X XR^M(POINT); NEXT
P0INT«-P0INT+2
POINT is VPTR.CPTR or GPC,
whichever is applicable
Set YR Same as above except
YR.-M (POINT)
Set X and Y

XR^M(P0INT)iP0INT-P0INT+2
YR^M(P0INT);P0INT^P0INT+2
Set State

STATED (POINT) ;P0INT.-P0INT+2
Unimplemented. Currently acts as NOPs.

Unimplemented. Currently act as NOPs.
No Operation

SETY

STXY

SETS

4-7

NOTE: High order operand bit of SPCL1 and SPCL2 codes is ignored.

Halfword Control Words are in the following format

11 0 ö 0 1 I <3 bit operand> I

The operand bits are interpretted the same as SPCL1 operands.
Ihese Control Uords can only occur in Short Vector (FMT»8) lists.

^ "" '■■l

GDP2
INDEX

GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 27

ASLI 2
Asyncronous Line Interface 2

Base Address 9

CGUF 3,5,9
Character Buffer 3,5,9
Character Fetch 9
Character Interrupt 9
Character Mode 3, 4, 7, H
Character Pointer 3,5,9
Character Processing 3,9,17
Character Sets 10
CLEAR 5, 18
CLKDIV 5,13
Clock 2
CMODE 5, 7, 14
Computer 2
Continue from Interrupt 7
Control Words 3, 4, 14
CPTR 3,5,9
Crashing Graphics 18

Dispatch Table 9
Dispatch Table Base Address 3
Dispatch Table Base Address Register 5
Display List 2
Display Tube 2
Double Port Memory 6, 18
DTBAR 3,5,9
DX 11
DY 11

Example of Instructions 8
Execute Instruction 3,7

Format 15
FORMAT 5,15
Format 4
Formats 11
FuM Word Control Words 14

GCSR 5
GDP 2
GIS 5,7
GO 5, 7, 14

mmm

GDP?
INDEX

GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 28

GPC 3, 5, 6
Graphic Display Processor 2
Graphic Program Counter 3
Graphics Control and Status Register 5
Graphics Interrupt Status 5, 7
Graphics Program Counter 5

Half Word Contrc1 '.'.Vd 16

IALT 16
1COM 16
Initialization 18
Instruction Buffer 6
Ins ruction Fetch 6
Instruction Processing 3
instuction Processing 6
Intensity 4,12
INTENSITY LEVEL 5, 12. 15
Interrupt 7.14
interrupt Dismissal 7
Interrupt Enable 7
Inierrup* Instruction 3,7
Interrupt Service Routine 3
Interrupt Status 7
INTR 3.7
irjrRRUPT gaVPTR 9
INTRRUPT VPTR 7
Invisible Vectors 12
10F1 16
IOF2 16
I0F3 16
IOFF 16
ION 16

JMP 3,6
JMS 3. 6, 17
Jump Instruction 3,6
Jump To Subroutine Instruction 6
Jump to Subroutine Instruction 3

Keyboard

Line Drawer
Line Drawing
LOAD CMODE
LOAD FORMAT
LOAD INTENSITY

3. 11
3
14
15
15

- ■ ■

J

GDP2
INDEX

GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 29

LOAD SCALE
Lookahead

Memory

No-op

Opcode
Operand

Pause
PDPU
Physical Screen

Read Only Memory
Registers
Resolution
Return Address
ROM

15
13

16, 18

3, 6, 14
3, 6, 14

7
2
11

2
5
11
6
2

SCALE
Scale
SET STATE
Setpoint
Setpoints
SETX
SETXY
SETY
Sign Extension
SPCL1
SPCL2
Starting Graphics
STATE
State Register
Subroutines

Terminate
Timing

UNBLANK

VBUF
Vector Buffer
Vector Fetch
Vector Format
Vector Intensity
Vector Pointer

5, 13, 15
4
16
16
4
16
16
16
5, 11
15
15
18
5
5
6

14, 16
19

5, 12, 15

4,5
4,5
12
11
12
4,5

wm^mmm WS»

GDP2 GRAPHIC DISPLAY VERSION 2 DOCUMENTATION 30

Vector Processing
Virtual Screen
Visible Vectors
VPTR

Windowing
WRAP
Wraparound

X Position
X Register
XQT
XR

Y Position
Y Register
YR

4. 11„17
11
12
4.5,6

12
5, 12
12

13
5
3, 7, 14. i7
4, 5 13

13
5
4, 5, 13

